timeSeriesLastTwoSamples
timeSeriesLastTwoSamples
自 v25.6 引入
用于对时间序列数据进行重采样,以支持类似 PromQL 中 irate 和 idelta 的计算的聚合函数。
一个聚合函数,用于接收时间戳和值成对的时间序列数据,并且最多只存储最近的 2 个样本。该聚合函数旨在与物化视图和用于存储针对网格对齐时间戳的重采样时间序列数据的聚合表一起使用。
聚合表仅为每个对齐的时间戳存储最后 2 个值。这样可以在只读取远少于原始表中存储数据量的情况下,计算类似 PromQL 的 irate 和 idelta。
注意
该函数为实验性功能,可通过设置 allow_experimental_ts_to_grid_aggregate_function=true 启用。
语法
timeSeriesLastTwoSamples(timestamp, value)
参数
返回值
返回一对长度在 0 到 2 之间且等长的数组。第一个数组包含采样后时间序列的时间戳,第二个数组包含时间序列对应的数值。Tuple(Array(DateTime), Array(Float64))
示例
原始数据示例表,以及一个用于存储重采样数据的表
-- Table for raw data
CREATE TABLE t_raw_timeseries
(
metric_id UInt64,
timestamp DateTime64(3, 'UTC') CODEC(DoubleDelta, ZSTD),
value Float64 CODEC(DoubleDelta)
)
ENGINE = MergeTree()
ORDER BY (metric_id, timestamp);
-- Table with data re-sampled to bigger (15 sec) time steps
CREATE TABLE t_resampled_timeseries_15_sec
(
metric_id UInt64,
grid_timestamp DateTime('UTC') CODEC(DoubleDelta, ZSTD), -- Timestamp aligned to 15 sec
samples AggregateFunction(timeSeriesLastTwoSamples, DateTime64(3, 'UTC'), Float64)
)
ENGINE = AggregatingMergeTree()
ORDER BY (metric_id, grid_timestamp);
-- MV for populating re-sampled table
CREATE MATERIALIZED VIEW mv_resampled_timeseries TO t_resampled_timeseries_15_sec
(
metric_id UInt64,
grid_timestamp DateTime('UTC') CODEC(DoubleDelta, ZSTD),
samples AggregateFunction(timeSeriesLastTwoSamples, DateTime64(3, 'UTC'), Float64)
)
AS SELECT
metric_id,
ceil(toUnixTimestamp(timestamp + interval 999 millisecond) / 15, 0) * 15 AS grid_timestamp, -- Round timestamp up to the next grid point
initializeAggregation('timeSeriesLastTwoSamplesState', timestamp, value) AS samples
FROM t_raw_timeseries
ORDER BY metric_id, grid_timestamp;
-- Insert some data
INSERT INTO t_raw_timeseries(metric_id, timestamp, value) SELECT number%10 AS metric_id, '2024-12-12 12:00:00'::DateTime64(3, 'UTC') + interval ((number/10)%100)*900 millisecond as timestamp, number%3+number%29 AS value FROM numbers(1000);
-- Check raw data
SELECT *
FROM t_raw_timeseries
WHERE metric_id = 3 AND timestamp BETWEEN '2024-12-12 12:00:12' AND '2024-12-12 12:00:31'
ORDER BY metric_id, timestamp;
3 2024-12-12 12:00:12.870 29
3 2024-12-12 12:00:13.770 8
3 2024-12-12 12:00:14.670 19
3 2024-12-12 12:00:15.570 30
3 2024-12-12 12:00:16.470 9
3 2024-12-12 12:00:17.370 20
3 2024-12-12 12:00:18.270 2
3 2024-12-12 12:00:19.170 10
3 2024-12-12 12:00:20.070 21
3 2024-12-12 12:00:20.970 3
3 2024-12-12 12:00:21.870 11
3 2024-12-12 12:00:22.770 22
3 2024-12-12 12:00:23.670 4
3 2024-12-12 12:00:24.570 12
3 2024-12-12 12:00:25.470 23
3 2024-12-12 12:00:26.370 5
3 2024-12-12 12:00:27.270 13
3 2024-12-12 12:00:28.170 24
3 2024-12-12 12:00:29.069 6
3 2024-12-12 12:00:29.969 14
3 2024-12-12 12:00:30.869 25
查询时间戳为 '2024-12-12 12:00:15' 和 '2024-12-12 12:00:30' 的最后 2 个样本
-- Check re-sampled data
SELECT metric_id, grid_timestamp, (finalizeAggregation(samples).1 as timestamp, finalizeAggregation(samples).2 as value)
FROM t_resampled_timeseries_15_sec
WHERE metric_id = 3 AND grid_timestamp BETWEEN '2024-12-12 12:00:15' AND '2024-12-12 12:00:30'
ORDER BY metric_id, grid_timestamp;
3 2024-12-12 12:00:15 (['2024-12-12 12:00:14.670','2024-12-12 12:00:13.770'],[19,8])
3 2024-12-12 12:00:30 (['2024-12-12 12:00:29.969','2024-12-12 12:00:29.069'],[14,6])
从原始数据中计算 idelta 和 irate
-- The aggregated table stores only last 2 values for each 15-second aligned timestamp.
-- This allows to calculate PromQL-like irate and idelta by reading much less data then is stored in the raw table.
WITH
'2024-12-12 12:00:15'::DateTime64(3,'UTC') AS start_ts, -- start of timestamp grid
start_ts + INTERVAL 60 SECOND AS end_ts, -- end of timestamp grid
15 AS step_seconds, -- step of timestamp grid
45 AS window_seconds -- "staleness" window
SELECT
metric_id,
timeSeriesInstantDeltaToGrid(start_ts, end_ts, step_seconds, window_seconds)(timestamp, value),
timeSeriesInstantRateToGrid(start_ts, end_ts, step_seconds, window_seconds)(timestamp, value)
FROM t_raw_timeseries
WHERE metric_id = 3 AND timestamp BETWEEN start_ts - interval window_seconds seconds AND end_ts
GROUP BY metric_id;
3 [11,8,-18,8,11] [12.222222222222221,8.88888888888889,1.1111111111111112,8.88888888888889,12.222222222222221]
基于重采样数据计算 idelta 和 irate
WITH
'2024-12-12 12:00:15'::DateTime64(3,'UTC') AS start_ts, -- start of timestamp grid
start_ts + INTERVAL 60 SECOND AS end_ts, -- end of timestamp grid
15 AS step_seconds, -- step of timestamp grid
45 AS window_seconds -- "staleness" window
SELECT
metric_id,
timeSeriesInstantDeltaToGrid(start_ts, end_ts, step_seconds, window_seconds)(timestamps, values),
timeSeriesInstantRateToGrid(start_ts, end_ts, step_seconds, window_seconds)(timestamps, values)
FROM (
SELECT
metric_id,
finalizeAggregation(samples).1 AS timestamps,
finalizeAggregation(samples).2 AS values
FROM t_resampled_timeseries_15_sec
WHERE metric_id = 3 AND grid_timestamp BETWEEN start_ts - interval window_seconds seconds AND end_ts
)
GROUP BY metric_id;
3 [11,8,-18,8,11] [12.222222222222221,8.88888888888889,1.1111111111111112,8.88888888888889,12.222222222222221]