使用 ClickHouse 分析 Stack Overflow 数据
该数据集包含在 Stack Overflow 上产生的所有 Posts、Users、Votes、Comments、Badges、PostHistory 和 PostLinks 记录。
你可以下载预先准备好的 Parquet 格式数据(包含截至 2024 年 4 月的所有帖子),也可以下载最新的 XML 格式数据并自行加载。Stack Overflow 会定期更新这些数据——历史上大约每 3 个月更新一次。
下图展示了在使用 Parquet 格式时可用数据表的 schema(表结构)。
该数据的 schema 说明可在此处找到。
预先准备的数据
我们提供了一份 Parquet 格式的数据副本,数据更新至 2024 年 4 月。就 ClickHouse 通常处理的行数规模而言(6000 万条帖子),这个数据集相对较小,但其中包含大量文本及体积较大的 String 列。
CREATE DATABASE stackoverflow
以下时间统计基于一个位于 eu-west-2、具有 96 GiB 内存和 24 vCPU 的 ClickHouse Cloud 集群。数据集位于 eu-west-3。
CREATE TABLE stackoverflow.posts
(
`Id` Int32 CODEC(Delta(4), ZSTD(1)),
`PostTypeId` Enum8('Question' = 1, 'Answer' = 2, 'Wiki' = 3, 'TagWikiExcerpt' = 4, 'TagWiki' = 5, 'ModeratorNomination' = 6, 'WikiPlaceholder' = 7, 'PrivilegeWiki' = 8),
`AcceptedAnswerId` UInt32,
`CreationDate` DateTime64(3, 'UTC'),
`Score` Int32,
`ViewCount` UInt32 CODEC(Delta(4), ZSTD(1)),
`Body` String,
`OwnerUserId` Int32,
`OwnerDisplayName` String,
`LastEditorUserId` Int32,
`LastEditorDisplayName` String,
`LastEditDate` DateTime64(3, 'UTC') CODEC(Delta(8), ZSTD(1)),
`LastActivityDate` DateTime64(3, 'UTC'),
`Title` String,
`Tags` String,
`AnswerCount` UInt16 CODEC(Delta(2), ZSTD(1)),
`CommentCount` UInt8,
`FavoriteCount` UInt8,
`ContentLicense` LowCardinality(String),
`ParentId` String,
`CommunityOwnedDate` DateTime64(3, 'UTC'),
`ClosedDate` DateTime64(3, 'UTC')
)
ENGINE = MergeTree
PARTITION BY toYear(CreationDate)
ORDER BY (PostTypeId, toDate(CreationDate), CreationDate)
INSERT INTO stackoverflow.posts SELECT * FROM s3('https://datasets-documentation.s3.eu-west-3.amazonaws.com/stackoverflow/parquet/posts/*.parquet')
0 rows in set. Elapsed: 265.466 sec. Processed 59.82 million rows, 38.07 GB (225.34 thousand rows/s., 143.42 MB/s.)
帖子还可以按年份获取,例如 https://datasets-documentation.s3.eu-west-3.amazonaws.com/stackoverflow/parquet/posts/2020.parquet
CREATE TABLE stackoverflow.votes
(
`Id` UInt32,
`PostId` Int32,
`VoteTypeId` UInt8,
`CreationDate` DateTime64(3, 'UTC'),
`UserId` Int32,
`BountyAmount` UInt8
)
ENGINE = MergeTree
ORDER BY (VoteTypeId, CreationDate, PostId, UserId)
INSERT INTO stackoverflow.votes SELECT * FROM s3('https://datasets-documentation.s3.eu-west-3.amazonaws.com/stackoverflow/parquet/votes/*.parquet')
0 rows in set. Elapsed: 21.605 sec. Processed 238.98 million rows, 2.13 GB (11.06 million rows/s., 98.46 MB/s.)
投票数据也可以按年份获取,例如 https://datasets-documentation.s3.eu-west-3.amazonaws.com/stackoverflow/parquet/posts/2020.parquet
CREATE TABLE stackoverflow.comments
(
`Id` UInt32,
`PostId` UInt32,
`Score` UInt16,
`Text` String,
`CreationDate` DateTime64(3, 'UTC'),
`UserId` Int32,
`UserDisplayName` LowCardinality(String)
)
ENGINE = MergeTree
ORDER BY CreationDate
INSERT INTO stackoverflow.comments SELECT * FROM s3('https://datasets-documentation.s3.eu-west-3.amazonaws.com/stackoverflow/parquet/comments/*.parquet')
0 rows in set. Elapsed: 56.593 sec. Processed 90.38 million rows, 11.14 GB (1.60 million rows/s., 196.78 MB/s.)
评论数据也可以按年份获取,例如 https://datasets-documentation.s3.eu-west-3.amazonaws.com/stackoverflow/parquet/posts/2020.parquet
CREATE TABLE stackoverflow.users
(
`Id` Int32,
`Reputation` LowCardinality(String),
`CreationDate` DateTime64(3, 'UTC') CODEC(Delta(8), ZSTD(1)),
`DisplayName` String,
`LastAccessDate` DateTime64(3, 'UTC'),
`AboutMe` String,
`Views` UInt32,
`UpVotes` UInt32,
`DownVotes` UInt32,
`WebsiteUrl` String,
`Location` LowCardinality(String),
`AccountId` Int32
)
ENGINE = MergeTree
ORDER BY (Id, CreationDate)
INSERT INTO stackoverflow.users SELECT * FROM s3('https://datasets-documentation.s3.eu-west-3.amazonaws.com/stackoverflow/parquet/users.parquet')
0 rows in set. Elapsed: 10.988 sec. Processed 22.48 million rows, 1.36 GB (2.05 million rows/s., 124.10 MB/s.)
CREATE TABLE stackoverflow.badges
(
`Id` UInt32,
`UserId` Int32,
`Name` LowCardinality(String),
`Date` DateTime64(3, 'UTC'),
`Class` Enum8('Gold' = 1, 'Silver' = 2, 'Bronze' = 3),
`TagBased` Bool
)
ENGINE = MergeTree
ORDER BY UserId
INSERT INTO stackoverflow.badges SELECT * FROM s3('https://datasets-documentation.s3.eu-west-3.amazonaws.com/stackoverflow/parquet/badges.parquet')
0 rows in set. Elapsed: 6.635 sec. Processed 51.29 million rows, 797.05 MB (7.73 million rows/s., 120.13 MB/s.)
帖子链接(PostLinks)
CREATE TABLE stackoverflow.postlinks
(
`Id` UInt64,
`CreationDate` DateTime64(3, 'UTC'),
`PostId` Int32,
`RelatedPostId` Int32,
`LinkTypeId` Enum8('Linked' = 1, 'Duplicate' = 3)
)
ENGINE = MergeTree
ORDER BY (PostId, RelatedPostId)
INSERT INTO stackoverflow.postlinks SELECT * FROM s3('https://datasets-documentation.s3.eu-west-3.amazonaws.com/stackoverflow/parquet/postlinks.parquet')
0 rows in set. Elapsed: 1.534 sec. Processed 6.55 million rows, 129.70 MB (4.27 million rows/s., 84.57 MB/s.)
帖子历史(PostHistory)
CREATE TABLE stackoverflow.posthistory
(
`Id` UInt64,
`PostHistoryTypeId` UInt8,
`PostId` Int32,
`RevisionGUID` String,
`CreationDate` DateTime64(3, 'UTC'),
`UserId` Int32,
`Text` String,
`ContentLicense` LowCardinality(String),
`Comment` String,
`UserDisplayName` String
)
ENGINE = MergeTree
ORDER BY (CreationDate, PostId)
INSERT INTO stackoverflow.posthistory SELECT * FROM s3('https://datasets-documentation.s3.eu-west-3.amazonaws.com/stackoverflow/parquet/posthistory/*.parquet')
0 rows in set. Elapsed: 422.795 sec. Processed 160.79 million rows, 67.08 GB (380.30 thousand rows/s., 158.67 MB/s.)
原始数据集
原始数据集可在 https://archive.org/download/stackexchange 获取,提供为压缩的 7‑Zip XML 格式,文件前缀为 stackoverflow.com*。
wget https://archive.org/download/stackexchange/stackoverflow.com-Badges.7z
wget https://archive.org/download/stackexchange/stackoverflow.com-Comments.7z
wget https://archive.org/download/stackexchange/stackoverflow.com-PostHistory.7z
wget https://archive.org/download/stackexchange/stackoverflow.com-PostLinks.7z
wget https://archive.org/download/stackexchange/stackoverflow.com-Posts.7z
wget https://archive.org/download/stackexchange/stackoverflow.com-Users.7z
wget https://archive.org/download/stackexchange/stackoverflow.com-Votes.7z
这些文件的大小可达约 35GB,下载时间可能在 30 分钟左右,具体取决于网络连接情况,且下载服务器会将速度限制在约 20MB/秒。
转换为 JSON
在撰写本文时,ClickHouse 尚未原生支持将 XML 作为输入格式。要将数据加载到 ClickHouse,我们首先需要将其转换为 NDJSON。
要将 XML 转换为 JSON,我们推荐使用 xq 这一 Linux 工具,它是一个用于处理 XML 文档的简单 jq 封装。
安装 xq 和 jq:
sudo apt install jq
pip install yq
以下步骤适用于上述任一文件。这里以 stackoverflow.com-Posts.7z 文件为示例,可按需调整。
使用 p7zip 解压该文件。解压后会生成一个单独的 XML 文件——在本例中为 Posts.xml。
文件被压缩了大约 4.5 倍。Posts 文件压缩后约为 22GB,解压后则需要大约 97GB 的空间。
p7zip -d stackoverflow.com-Posts.7z
以下操作会将该 XML 文件拆分为多个文件,每个文件包含 10,000 行。
mkdir posts
cd posts
# the following splits the input xml file into sub files of 10000 rows
tail +3 ../Posts.xml | head -n -1 | split -l 10000 --filter='{ printf "<rows>\n"; cat - ; printf "</rows>\n"; } > $FILE' -
执行完上述命令后,将得到一组文件,每个文件包含 10000 行。这样可以确保下一条命令的内存开销不会过大(XML 到 JSON 的转换是在内存中进行的)。
find . -maxdepth 1 -type f -exec xq -c '.rows.row[]' {} \; | sed -e 's:"@:":g' > posts_v2.json
上述命令会生成一个 posts.json 文件。
使用以下命令将其加载到 ClickHouse 中。注意,这里为 posts.json 文件显式指定了 schema。需要根据具体数据类型进行相应调整,以与目标表保持一致。
clickhouse local --query "SELECT * FROM file('posts.json', JSONEachRow, 'Id Int32, PostTypeId UInt8, AcceptedAnswerId UInt32, CreationDate DateTime64(3, \'UTC\'), Score Int32, ViewCount UInt32, Body String, OwnerUserId Int32, OwnerDisplayName String, LastEditorUserId Int32, LastEditorDisplayName String, LastEditDate DateTime64(3, \'UTC\'), LastActivityDate DateTime64(3, \'UTC\'), Title String, Tags String, AnswerCount UInt16, CommentCount UInt8, FavoriteCount UInt8, ContentLicense String, ParentId String, CommunityOwnedDate DateTime64(3, \'UTC\'), ClosedDate DateTime64(3, \'UTC\')') FORMAT Native" | clickhouse client --host <host> --secure --password <password> --query "INSERT INTO stackoverflow.posts_v2 FORMAT Native"
示例查询
下面是几个简单的查询,帮助你快速入门。
SELECT
arrayJoin(arrayFilter(t -> (t != ''), splitByChar('|', Tags))) AS Tags,
count() AS c
FROM stackoverflow.posts
GROUP BY Tags
ORDER BY c DESC
LIMIT 10
┌─Tags───────┬───────c─┐
│ javascript │ 2527130 │
│ python │ 2189638 │
│ java │ 1916156 │
│ c# │ 1614236 │
│ php │ 1463901 │
│ android │ 1416442 │
│ html │ 1186567 │
│ jquery │ 1034621 │
│ c++ │ 806202 │
│ css │ 803755 │
└────────────┴─────────┘
10 rows in set. Elapsed: 1.013 sec. Processed 59.82 million rows, 1.21 GB (59.07 million rows/s., 1.19 GB/s.)
Peak memory usage: 224.03 MiB.
回答数最多的用户(活跃账号)
账号需要包含一个 UserId。
SELECT
any(OwnerUserId) UserId,
OwnerDisplayName,
count() AS c
FROM stackoverflow.posts WHERE OwnerDisplayName != '' AND PostTypeId='Answer' AND OwnerUserId != 0
GROUP BY OwnerDisplayName
ORDER BY c DESC
LIMIT 5
┌─UserId─┬─OwnerDisplayName─┬────c─┐
│ 22656 │ Jon Skeet │ 2727 │
│ 23354 │ Marc Gravell │ 2150 │
│ 12950 │ tvanfosson │ 1530 │
│ 3043 │ Joel Coehoorn │ 1438 │
│ 10661 │ S.Lott │ 1087 │
└────────┴──────────────────┴──────┘
5 rows in set. Elapsed: 0.154 sec. Processed 35.83 million rows, 193.39 MB (232.33 million rows/s., 1.25 GB/s.)
Peak memory usage: 206.45 MiB.
浏览量最高的 ClickHouse 相关帖子
SELECT
Id,
Title,
ViewCount,
AnswerCount
FROM stackoverflow.posts
WHERE Title ILIKE '%ClickHouse%'
ORDER BY ViewCount DESC
LIMIT 10
┌───────Id─┬─Title────────────────────────────────────────────────────────────────────────────┬─ViewCount─┬─AnswerCount─┐
│ 52355143 │ Is it possible to delete old records from clickhouse table? │ 41462 │ 3 │
│ 37954203 │ Clickhouse Data Import │ 38735 │ 3 │
│ 37901642 │ Updating data in Clickhouse │ 36236 │ 6 │
│ 58422110 │ Pandas: How to insert dataframe into Clickhouse │ 29731 │ 4 │
│ 63621318 │ DBeaver - Clickhouse - SQL Error [159] .. Read timed out │ 27350 │ 1 │
│ 47591813 │ How to filter clickhouse table by array column contents? │ 27078 │ 2 │
│ 58728436 │ How to search the string in query with case insensitive on Clickhouse database? │ 26567 │ 3 │
│ 65316905 │ Clickhouse: DB::Exception: Memory limit (for query) exceeded │ 24899 │ 2 │
│ 49944865 │ How to add a column in clickhouse │ 24424 │ 1 │
│ 59712399 │ How to cast date Strings to DateTime format with extended parsing in ClickHouse? │ 22620 │ 1 │
└──────────┴──────────────────────────────────────────────────────────────────────────────────┴───────────┴─────────────┘
10 rows in set. Elapsed: 0.472 sec. Processed 59.82 million rows, 1.91 GB (126.63 million rows/s., 4.03 GB/s.)
Peak memory usage: 240.01 MiB.
争议最大的帖子
SELECT
Id,
Title,
UpVotes,
DownVotes,
abs(UpVotes - DownVotes) AS Controversial_ratio
FROM stackoverflow.posts
INNER JOIN
(
SELECT
PostId,
countIf(VoteTypeId = 2) AS UpVotes,
countIf(VoteTypeId = 3) AS DownVotes
FROM stackoverflow.votes
GROUP BY PostId
HAVING (UpVotes > 10) AND (DownVotes > 10)
) AS votes ON posts.Id = votes.PostId
WHERE Title != ''
ORDER BY Controversial_ratio ASC
LIMIT 3
┌───────Id─┬─Title─────────────────────────────────────────────┬─UpVotes─┬─DownVotes─┬─Controversial_ratio─┐
│ 583177 │ VB.NET Infinite For Loop │ 12 │ 12 │ 0 │
│ 9756797 │ Read console input as enumerable - one statement? │ 16 │ 16 │ 0 │
│ 13329132 │ What's the point of ARGV in Ruby? │ 22 │ 22 │ 0 │
└──────────┴───────────────────────────────────────────────────┴─────────┴───────────┴─────────────────────┘
3 rows in set. Elapsed: 4.779 sec. Processed 298.80 million rows, 3.16 GB (62.52 million rows/s., 661.05 MB/s.)
Peak memory usage: 6.05 GiB.
我们感谢 Stack Overflow 按照 cc-by-sa 4.0 许可提供这些数据,并在此致谢他们的付出,同时注明数据的原始来源为 https://archive.org/details/stackexchange。